خطر سقوط و تعادل پویا پس از یک دوره تمرین در عمق‌های متفاوت آب در زنان سالمند مبتلا به استئوآرتریت زانو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه تربیت‌بدنی و علوم ورزشی، دانشگاه هنر ایران، تهران، ایران

2 استادیار گروه تربیت بدنی و علوم ورزشی، دانشگاه هنر ایران، تهران، ایران

3 گروه تربیت‌بدنی و علوم ورزشی، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران

4 استادیار گروه تربیت‌بدنی و علوم ورزشی، دانشگاه ملی مهارت، تهران، ایران

چکیده
اثرات و خواص فیزیکی آب منابع مفیدی برای تمرین افراد سالمند مبتلا به آرتروز است. ویژگی‌های فیزیکی آب تحت‌تأثیر عمق آبی قرار می‌گیرد که افراد در آن ورزش می‌کنند و تأثیرات تمرینی را متفاوت می‌کند؛ بنابراین هدف این مطالعه، مقایسه تأثیر تمرین در آب کم‌عمق و عمیق بر تعادل پویا، خطر سقوط و درد در زنان سالمند مبتلا به استئوآرتریت زانو بود. تعداد 43 زن در دامنه سنی 55 سال و بیشتر، با عارضه استئوآرتریت مزمن زانو پس از تکمیل رضایت‌نامه و ارزیابی­های مقدماتی و پیش­آزمون، با توجه به دو متغیر شاخص توده بدن و درصد چربی و همچنین متغیرهای وابسته همتاسازی شدند. سپس به طور تصادفی در سه گروه قرار گرفتند: 1) تمرین در آب کم­عمق (14=n)، 2) تمرین در آب عمیق (14=n) و 3) کنترل (15=n). مداخله تمرینی هشت هفته تمرین 45 تا 60 دقیقه‌ای، سه بار در طول هفته بود. برای اندازگیری­های تعادل پویا، خطر سقوط و درد به‌ترتیب از آزمون‌های ستاره، پرسشنامه برگ و پرسشنامه کووس استفاده شد. داده­ها با استفاده از تحلیل واریانس دوعاملی با تکرار سنجش عامل آزمون و آزمون­ تعقیبی LSD در سطح اطمینان 95 درصد تجزیه و تحلیل شدند. نتایج نشان داد، بهبود تعادل پویا، کاهش خطر سقوط و میزان درد در گروه آب کم­عمق در مقایسه با گروه آب عمیق (001/0>P) و گروه کنترل (001/0>P) به طور معنا­داری بیشتر بود. بهبود این متغیرها در گروه آب عمیق نیز در مقایسه با گروه کنترل به طور معنا­داری بیشتر بود (001/0>P). براساس یافته­های تحقیق، پیشنهاد می‌شود از تمرین در آب به‌ویژه تمرین در آب کم‌عمق، به عنوان راهکاری مناسب و تأثیرگذار بر کاهش خطر سقوط، درد و بهبود تعادل پویا برای سالمندان مبتلا به استئوآرتریت مزمن زانو استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Risk of Fall and Dynamic Balance after Aquatic Exercise at Different Depths in Elderly Women with Knee Osteoarthritis

نویسندگان English

Faezeh Zamanian 1
Mahdi Armandnia 2
Mahdieh Gharehlar 3
Majid Vesalinaseh 4
1 Assistant Professor of Physical Education & Sport Science, Iran University of Art, Tehran, Iran
2 Assistant Professor of Physical Education & Sport Science, Iran University of Art, Tehran, Iran
3 Department of physical education & sport science, Ur.C., Islamic Azad University, Urmia, Iran
4 Assistant Professor Department of Physical Education and Sport Sciences, National University of Skill (NUS), Tehran, Iran
چکیده English

Background and Purpose
In the elderly with knee osteoarthritis, postural fluctuations and the risk of falling increase significantly (1). Elderly individuals suffering from knee osteoarthritis often experience pronounced postural instability and an elevated risk of falls. [Therefore, improving balance and reducing pain in these individuals is an effective strategy to mitigate fall risk (2).] Consequently, interventions aimed at enhancing balance and alleviating pain are critical methods for fall prevention. Many exercises have been proposed to improve balance and thus reduce fall incidence. Various forms of exercise are recognized to bolster balance and diminish fall-related risks.
However, arthritis pain frequently hinders patients’ ability to pursue and benefit from exercising (2). Nonetheless, pain associated with arthritis often undermines exercise adherence and effectiveness. Exercising in water is more suitable for individuals with musculoskeletal problems than land-based exercise. Aquatic exercise offers an advantageous alternative, providing a supportive environment particularly beneficial for those with musculoskeletal limitations. This is because as water depth increases, joint load and pain sensation decrease (3). Increasing immersion depth reduces joint loading and pain perception.
However, as water depth increases, if the foot loses contact with the pool floor, proprioceptive input diminishes, weakening balance-related sensory feedback. Yet, in deeper water, lack of foot-ground contact diminishes proprioceptive cues essential for postural control and fall prevention. This proprioceptive perception is vital for maintaining balance and decreasing fall risk. The integrity of proprioception is paramount in sustaining postural stability.
Hence, the fundamental question arises: which water depth maximizes improvements in balance, fall risk reduction, and pain alleviation? Therefore, identifying the optimal pool depth for maximizing therapeutic benefits on balance, fall risk, and pain is crucial. Water depth influences training efficacy through variables such as gravity, hydrostatic pressure, and exercise chain configurations (open or closed) (4). Training parameters, including gravitational forces, hydrostatic pressure, and kinetic chain characteristics, vary with water depth and impact outcomes.
Accordingly, the purpose of this research was to investigate the effects of training in two water depths—shallow water, where the feet maintain contact with the pool floor, and deep water, where feet do not touch the bottom—on dynamic balance, fall risk, and pain in elderly women with knee osteoarthritis. This study compares shallow and deep water exercise effects on dynamic balance, fall risk, and pain among elderly women afflicted with knee osteoarthritis.
 
Methods
This semi-experimental, pretest-posttest study involved 43 elderly women aged 55 and older with chronic knee osteoarthritis of at least eight months duration. A semi-experimental design with pretest and posttest measurements was used on 43 elderly female participants (age ≥ 55) diagnosed with chronic knee osteoarthritis of minimum eight months.  The intervention lasted 12 weeks with three training sessions per week in two aquatic environments: shallow and deep water. Participants underwent 12 weeks of aquatic training, thrice weekly, in either shallow or deep water settings.
After preliminary assessments and informed consent, participants were divided into three groups: two shallow water exercise groups (14 each), one deep water exercise group (14), and one control group. Following baseline evaluation and consent, subjects were assigned to three groups: two shallow water exercise groups (each n=14), one deep water exercise group (n=14), and a control group.
Dynamic balance, fall risk, and pain were measured using the Star test (5), Berg Balance Scale (6), and KOOS questionnaire (7), respectively. Outcome measures included the Star Excursion Balance Test for dynamic balance, the Berg Balance Scale for fall risk assessment, and the KOOS (Knee Injury and Osteoarthritis Outcome Score) for pain evaluation.
Data analysis employed a 2 (time: pretest/posttest) × 3 (group: shallow water/deep water/control) repeated-measures ANOVA with LSD post hoc tests at a significance level of p < 0.05. Statistical analyses were conducted via repeated-measures ANOVA (2 × 3 design) with LSD post hoc tests, maintaining an alpha of 0.05.
[SPSS version 26 was used for all statistical analyses. All analyses utilized SPSS version 26.
 
Results
Table 1 presents the demographic characteristics of participants across groups.
 
 Table 1. Descriptive statistics related to the individual characteristics of the subjects by groups





Groups


Variables




Control
(n=14)


Deep-water
(n=14)


Shallow-water (n=14)




63.41 ± 5.16


63.11 ± 5.37


62.41 ± 5.16


Age (year)




154.85 ± 3.99


155.22 ± 4.03


154.92 ± 4.63


Height (cm)




60.13 ± 10.86


61.03 ± 11.20


59.84 ± 10.45


Weight (kg)




25.83 ± 4.21


26.11 ± 4.09


25.71 ± 3.96


Body mass index (kg/m2)




31.17 ± 7.55


31.83 ± 6.88


30.69 ± 7.24


fat percentage (%)





Table 2 depicts the result of two factor repeated measure ANOVAs of main effects (within groups: aquatic exercise and between groups: depth of water) on dynamic balance, falling risk and pain were statistically significant.
Table 2. The result of main effects on dynamic balance, falling risk, quality of life, and pain





Variables


Source


df1


df2


F


p


2η




Dynamic Balance


Aquatic exercise


1


40


3.06


0.01*


0.08




Depth (shallow/ deep/ control)


2


40


3.15


0.01*


0.08




Aquatic exercise× Depth


2


40


4.90


0.007**


0.13




Falling risk


Aquatic exercise


1


40


8.72


0.001***


0.20




Depth (shallow/ deep/ control)


2


40


9.39


0.001***


0.23




Aquatic exercise× Depth


2


40


12.40


0.001***


0.35




Pain


Aquatic exercise


1


40


9.04


0.001***


0.21




Depth (shallow/ deep/ control)


2


40


9.67


0.001***


0.24




Aquatic exercise× Depth


2


40


12.97


0.001***


0.35





* Significance at p≤0.05, **significance at p≤0.01, ***significance at p≤0.001
Due to the significance of the main effect of water depth, the LSD test was used to perform multiple comparisons. Results are shown in table 3.
Table 3. The results of LSD test for between groups comparison of dynamic balance, falling risk and pain.





Variables


Groups


 


Mean difference


Standard error


P




Dynamic Balance


Shallow water


Deep water


3.58


0.89


0.001***




Control


5.58


0.83


0.001***




Deep water


Control


2.00


0.90


0.02*




Falling risk


Shallow water


Deep water


6.69


0.96


0.001***




Control


16.01


0.74


0.001***




Deep water


Control


9.32


1.08


0.001***




Pain


Shallow water


Deep water


7.53


0.78


0.001***




Control


17.07


0.54


0.001***




Deep water


Control


9.54


0.69


0.001***





*Significance at p≤0.05, *** significance at p≤0.001
 
descriptive statistics (Table 1) report participant demographics by group.
Results demonstrated that 12 weeks of aquatic exercise in both shallow and deep water significantly improved dynamic balance and reduced fall risk and pain. Both shallow and deep water exercise groups exhibited significant post-intervention improvements in dynamic balance and reductions in fall risk and pain.
Improvements were more pronounced in the shallow water group compared to the deep water group. Notably, enhancements were significantly greater for the shallow water group. This suggests that foot contact with the pool floor facilitates more effective proprioceptive feedback, stimulating balance mechanisms more robustly than skin receptor stimulation via hydrostatic pressure alone (3). The presence of foot-floor contact in shallow water likely provides superior proprioceptive stimulation compared to deep water’s reliance on hydrostatic pressure and cutaneous receptors.
Shallow water training also yielded greater reductions in fall risk and pain, likely due to more considerable balance improvements. These superior outcomes in fall risk and pain may be mediated by enhanced balance function observed in the shallow water cohort. Improved balance corrects motor patterns and establishes effective muscle coordination, crucial for postural stability, thereby reducing pain and fall risk (8). Enhanced postural stability involves coordinated muscular control, mitigating pain and decreasing susceptibility to falls.
Overall, these findings support the therapeutic efficacy of aquatic exercise, particularly in shallow water, for elderly individuals with knee osteoarthritis. The results corroborate prior evidence endorsing water-based therapy and emphasize shallow water exercise’s superiority for this population.
 
 
Article Message
Elderly individuals with chronic knee osteoarthritis can benefit significantly from water-based exercise to improve balance, reduce pain, and lower fall risk. Aquatic exercise provides substantial benefits for elderly patients with chronic knee osteoarthritis in terms of balance, pain relief, and fall prevention. Adjusting water depth to chest level, where feet maintain contact with the pool floor, is more effective than exercising in deep water. Optimizing water depth to allow foot-floor contact enhances therapeutic outcomes more than training in non-weight-bearing deep water.
Authors’ Contributions
Conceptualization: Faezeh Zamanian, Mahdi Armandnia
Data Collection: Faezeh Zamanian, Mahdie Gharehlar
Data Analysis: Mahdi Armandnia, Majid Vesalinaseh
Manuscript Writing: Faezeh Zamanian, Mahdi Armandnia, Mahdie Gharehlar, Majid Vesalinaseh
Review and Editing: Mahdi Armandnia
Responsible for funding: No financial support was received for this study.
Literature Review: Faezeh Zamanian و Mahdi Armandnia, Mahdie Gharehlar, Majid Vesalinaseh
Project Manager: Mahdi Armandnia, Faezeh Zamanian
Ethical Considerations
The ethical code is UMIN000058649. This study was approved under ethical code UMIN000058649.
Conflict of Interest
The authors have no conflict of interest. The authors declare no conflicts of interest.
 
Acknowledgments
We are grateful to all individuals and participants who provided significant help during our research. The authors express sincere gratitude to all participants and collaborators who contributed to this study.

کلیدواژه‌ها English

Depth
Falling risk
Balance
Elderly
Knee osteoarthritis
 
1.     Cui Q, Zhong Y, Gui Y, Ma S, Ge Y. Experiences and perceptions of fear of falling in older adults: A systematic review and meta-synthesis of qualitative studies. Geriatric Nursing. 2025; 61:324-35. https://doi.org/10.1016/j.gerinurse.2024.11.003
2.     Marks R. Muscles and their osteoarthritis pathogenic linkages. Arch Rheum Arthritis Res. 2024;3(3):
1-8. https://doi.org/10.33552/ARAR.2024.03.000561
3.     de Oliveira Fernandes V, de Souza Moreira B, de Melo GASC, de Avelar NCP, Costa HS, de Carvalho Bastone A. Factors associated with fear of falling in older women with knee osteoarthritis: a cross-sectional study. Geriatric Nursing. 2024;55:333-8. https://doi.org/10.1016/j.gerinurse.2023.12.018
4.     Hajmohammadi F, Hosseinifar M, Akbari A, Ghiasi F, Namvar H, Askari Ashtiani A. The effect of aquatic and non-aquatic balance training on the fall risk of patients with grade 2 and 3 knee osteoarthritis: a randomized clinical trial. Iranian Rehabilitation Journal. 2021;19(4):343-50. [In Persian].
5.     Freire I, Seixas A. Effectiveness of a sensorimotor exercise program on proprioception, balance, muscle strength, functional mobility and risk of falls in older people. Front Physiol. 2024;15:1309161. https://doi.org/10.3389/fphys.2024.1309161
6.     Huang Y, Kang S, Park I. Effects of unstable exercise using the inertial load of water on lower extremity kinematics and center of pressure during stair ambulation in middle-aged women with degenerative knee arthritis. Appl Sci. 2025;15(6):62992. https://doi.org/10.3390/app15062992
7.     Grønne DT, Ryg J, Rubin KH, Delbaere K, Roos EM, Skou ST. Statistical analysis plan: Concern about falling in people with knee or hip osteoarthritis and the role of pain, function, and psychological factors – a cross-sectional study of 7,381 patients treated in primary care. 2024. Available at: https://portal.findresearcher.sdu.dk/en/publications
8.     Slouma M, Abbes M, Kharrat L, Dhahri R, Maaoui R, Mouhli N, et al. Aquatic versus land-based exercise for knee osteoarthritis: a randomized controlled trial. J Korean Acad Fam Med. 2024. https://doi.org/10.4082/kjfm.23.0102
9.     Xuan CKT, Chiun PL, Sian FT, Hua KK, Wah YC. The effectiveness of aquatic exercise in reducing pain and improving muscles strength in knee osteoarthritis patient: a systematic review and meta-analysis. J Survey Fish Sci. 2023;10(4S):528-51. https://doi.org/10.17762/sfs.v10i4S.760
10.   Kucia K, Koteja A, Rydzik Ł, Javdaneh N, Shams A, Ambroży T. The impact of a 12-week aqua fitness program on the physical fitness of women over 60 years of age. Sports. 2024;12(4):105. https://doi.org/10.3390/sports12040105
11.   Gyu-sun M. The impact of water depth and speed on lower muscles activation during exercise in different aquatic environments. Int J Internet Broadcasting Commun. 2024;16(2):169-78. https://doi.org/10.7236/IJIBC.2024.16.2.169
12.   Leonel LS, Wolin IAV, Danielevicz A, Diesel M, Constantini MI, de Oliveira Junior JB, et al. Twenty-four weeks of combined training in different environments, aquatic and land, in the type 2 diabetes management (Aquatic and Land Exercise for Diabetes - ALED): protocol of a randomized clinical trial. Trials. 2025;26(1):12. https://doi.org/10.1186/s13063-024-08660-2
13.   Yennan P, Suputtitada A, Yuktanandana P. Effects of aquatic exercise and land-based exercise on postural sway in elderly with knee osteoarthritis. Asian Biomed. 2010;4(5):739-45. https://doi.org/10.2478/abm-2010-0096
14.   Kaneda K, Sato D, Wakabayashi H, Hanai A, Nomura T. A comparison of the effects of different water exercise programs on balance ability in elderly people. J Aging Phys Act. 2008;16(4):381-92. https://doi.org/10.1123/japa.16.4.381
15.   Kwok MM, So BC, Heywood S, Lai MC, Ng SS. Effectiveness of deep water running on improving cardiorespiratory fitness, physical function and quality of life: a systematic review. Int J Environ Res Public Health. 2022;19(15):9434. https://doi.org/10.3390/ijerph19159434
16.   So BCL, Yuen CHN, Tung KLH, Lam S, Cheng SL, Hung ZWL, et al. A study on trunk muscle activation of 2 deep water running styles (high-knee and cross-country style) and land walking. J Sport Rehabil. 2020;29(1):73-8. https://doi.org/10.1123/jsr.2017-0334
17.   Holmberg PM, Gorman AD, Jenkins DG, Kelly VG. Lower-body aquatic training prescription for athletes. J Strength Cond Res. 2021;35(3):859-69. https://doi.org/10.1519/JSC.0000000000003925
18.   Muñoz Juzado A, Saitua Penas A, López B, Riber Pérez C, Satué Ambrojo K, Sánchez de Medina A, et al. The use of the water treadmill for the rehabilitation of musculoskeletal injuries in the sport horse. J Vet Res. 2019;6(3):439-45. https://doi.org/10.2478/jvetres-2019-0050
19.   Buckthorpe M, Pirotti E, Della Villa F. Benefits and use of aquatic therapy during rehabilitation after ACL reconstruction – a clinical commentary. Int J Sports Phys Ther. 2019;14(6):978.
20.   Gribble P. The star excursion balance test as a measurement tool. Int J Athl Ther Train. 2003;8(2):46-7. https://doi.org/10.1123/att.8.2.46
21.   Miyamoto ST, Lombardi Júnior I, Berg KO, Ramos LR, Natour J. Brazilian version of the Berg balance scale. Brazilian Journal of Medical and Biological Research. 2004;37:1411-21. https://doi.org/10.1590/s0100-879x200400090001 7
22.   Kashani V, Zarifkar M, Alinaghipoor Z. Determining validity and reliability of the Persian version of activities-specific balance confidence scale for elderly. Koomesh. 2018;20(4):705-12. https://doi.org/10.30699/jambs.30.142.397
23.   Fukuhara S, Ikegami N, Torrance GW, Nishimura S, Drummond M, Schubert F. The development and use of quality-of-life measures to evaluate health outcomes in Japan. Pharmacoeconomics. 2002;20:17-23. https://doi.org/10.2165/00019053-200220002-00003
24.   Saraei-Pour S, Salavati M, Akhbari B, Kazem-Nezhad A. Translation and adaptation of Knee Injury and Osteoarthritis Outcome Score (KOOS) into Persian and testing Persian version reliability among Iranians with osteoarthritis. Archives of Rehabilitation. 2007;8(1):42-6. [In Persian].
25.   Resende SM, Rassi CM. Effects of hydrotherapy in balance and prevention of falls among elderly women. Brazilian Journal of Physical Therapy. 2008;12:57-63. https://doi.org/10.1590/S1413-35552008000100011
26.   Zamanian F, Vesalinaseh M, Nourollahnajafabadi M, Asadysaravi S, Haghighi M, Najafabad I. Comparison of the effects of aquatic exercise in shallow and deep water on postural control in elderly women with chronic knee osteoarthritis. Life Sci J. 2012;9(4):5768-71. http://www.lifesciencesite.com
27.   Borg GA. Perceived exertion: a note on history and methods. Med Sci Sports. 1973;5:90-3. https://doi.org/10.1249/00005768-197300520-00017
28.   Kottaras A, Lytras D, Kottaras S, Iakovidis P. Effect of aquatic physiotherapy on functioning, balance performance, motor performance, and health-related quality of life in patients with Parkinson's disease: a review of structure and dosimetry of aquatic exercise programs. Critical Reviews in Physical and Rehabilitation Medicine. 2021;33(1):67-86. https://doi.org/10.1615/CritRevPhysRehabilMed.2021038050
29.   Song J-A, Oh JW, editors. Effects of aquatic exercises for patients with osteoarthritis: systematic review with meta-analysis. Healthcare. 2022;10(3):560. https://doi.org/10.3390/healthcare10030560
30.   Tavakol A, Daneshjoo A, Sahebozamani M. Effect of six weeks shallow and deep water exercises on static balance and pain of girls with patellofemoral pain. Rehabilitation Medicine. 2018;5(3):111-8.
31.   Seyedjafari E, Sahebozamani M, Ebrahimipour E. Effect of eight weeks of water exercises on deep part of the pool on the static balance of the elderly man. Iranian Journal of Ageing. 2017;12(3):384-93. https://doi.org/10.21859/ [In Persian].
32.   Mello AI. “Water immersed inverted pendulum”: a physiomechanical model of shallow water walking at different depths and speeds. 2021. http://hdl.handle.net/10183/230861
33.   Gbiri C, Okafor U, Alade M. Comparative efficacy of open-chain and close-chain kinematics on proprioception, muscles’ strength and functional performances in individuals with knee osteoarthritis. Occup Med Health Aff. 2013;1(1):1-5. https://doi.org/10.4172/omha.1000104
34.   Jung T, Kim Y, Lim H, Vrongistinos K. The influence of water depth on kinematic and spatiotemporal gait parameters during aquatic treadmill walking. Sports Biomechanics. 2019;18(3):297-307. https://doi.org/10.1080/14763141.2017.1409255
35.   Sturnieks DL, Tiedemann A, Chapman K, Munro B, Murray SM, Lord SR. Physiological risk factors for falls in older people with lower limb arthritis. J Rheumatol. 2004;31(11):2272-9.
36.   Długosz-Boś M, Filar-Mierzwa K, Stawarz R, Ścisłowska-Czarnecka A, Jankowicz-Szymańska A, Bac A. Effect of three months pilates training on balance and fall risk in older women. Int J Environ Res Public Health. 2021;18(7):3663. https://doi.org/10.3390/ijerph18073663
37.   Sartipzadeh M, Moazami M, Mohammadi M. The effect of core stabilization training on elderly balance and knee pain with knee osteoarthritis. J Paramed Sci Rehabil. 2016;5(3):7-17. https://doi.org/10.22038/jpsr.2016.7342 [In Persian].
38.   Valenzuela-Fuenzalida JJ, Barahona-Vásquez M, López-Chaparro M, Martínez-Hernández D, Ávila-Sepulveda R, Orellana-Donoso M, et al. Effectiveness of aquatic exercise versus other therapeutic modalities in patients with knee osteoarthritis pain: a systematic review with meta-analysis. 2024:2-20. https://doi.org/10.21203/rs.3.rs-3812766/v1
39.   Augusto Teixeira C, Haas L, Frata B, Fiori Bortoli A, Scalco Acco F, de Castro G, et al. Effects of a low, medium, and high-intensity aquatic physiotherapy protocol on functional and biochemical parameters in individuals with knee osteoarthritis: protocol for a crossover randomized controlled trial. F1000Research. 2024; 12:1605. https://doi.org/10.12688/f1000research.140342.4
40.   Heywood S, McClelland J, Geigle P, Rahmann A, Villalta E, Mentiplay B, et al. Force during functional exercises on land and in water in older adults with and without knee osteoarthritis: implications for rehabilitation. Knee. 2019;26(1):61-72. https://doi.org/10.1016/j.knee.2018.11.003
41.   Ezadi H, Ghanizadeh Hesar N. The effect of eight weeks of selected exercises in water on pain and balance of female nurses with chronic back pain. J Sport Biomech. 2021;7(1):44-55. https://doi.org/10.32598/biomechanics.7.1.3
42.   Devor M. Experiencing pain: perspectives of Patrick D. Wall—founding editor of the journal PAIN. Pain. 2025;166(1):11-9. https://doi.org/10.1097/j.pain.0000000000003480
دوره 17، شماره 45
پاییز 1404
صفحه 73-94

  • تاریخ دریافت 12 خرداد 1404
  • تاریخ بازنگری 09 تیر 1404
  • تاریخ پذیرش 12 مرداد 1404