نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری بیومکانیک ورزشی، دانشگاه بوعلی سینا، همدان، ایران

2 استاد بیومکانیک ورزشی، دانشکدۀ علوم ورزشی، دانشگاه بوعلی سینا (نویسندۀ مسئول).

3 استادیار، گروه بیومکانیک و فناوری ورزشی، پژوهشگاه تربیت‌بدنی و علوم ورزشی، تهران، ایران.

4 استادیار، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران.

چکیده

هدف این مطالعه، تعیین اثر سه نوع بریس مختلف بر پایداری دینامیک موضعی با استفاده از حداکثر نمای لیاپانوف حین دویدن در افراد مبتلا به ناپایداری مچ پا بود. 12 آزمودنی مبتلا به ناپایداری مچ پا در گروه آسیب‌دیده و 12 آزمودنی سالمدر این مطالعه شرکت کردند. گروه آسیب‌دیده، روی تردمیل 70 گام با بریس سخت، نیمه‌سخت، نرم و بدون بریس دویدند. گروه سالم، تنها در وضعیت بدون بریس آزمون دویدن را انجام دادند. حداکثر نمای لیاپانوف با استفاده از داده‌های کینماتیک محاسبه شد. نتایج نشان داد حداکثر نمای لیاپانوف کوتاه­دوره در دویدن با بریس نیمه‌سخت در گروه آسیب‌دیده به‌طور معناداری با سایر وضعیت­های بریس مچ پا متفاوت است، اما دویدن با بریس نیمه‌سخت تفاوت معناداری در حداکثر نمای لیاپانوف کوتاه­دوره گروه آسیب‌دیده در مقایسه با گروه سالم ایجاد نکرد. با توجه به این نتایج، به نظر می‌رسد دویدن با بریس نیمه‌سخت توانسته است وضعیتی نزدیک به دویدن گروه سالم فراهم کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of three different ankle braces on local dynamical stability of individuals with chronic ankle instability during Running

نویسندگان [English]

  • Zahra Bassiri 1
  • Mehrdad Anbarian 2
  • Ali Sharifnezhad 3
  • Behnam Miripour Fard 4

1 PhD. Candidate of Biomechanics of Sport, Bu-Ali Sina University, Hamedan, Iran

2 Faculty of Sport Sciences, Bu Ali Sina University

3 Department of Sport Biomechanics and Technology, Sport Science Research Institute

4 Assistant Professor of Mechanical Engineering and Robotics, University of Guilan

چکیده [English]

The purpose of this study was to determine the effect of three different ankle braces using the Maximum Lyapunov exponent on local dynamical stability of individuals with chronic ankle instability during running. Twelve subjects with chronic ankle instability as injured group and 12 healthy individuals participated in this study. Injured group performed 70 strides of treadmill running in shoe and rigid, semi-rigid and soft braces as well as no-brace conditions. The healthy group performed the test only in no-brace condition. Kinematics data were used to calculate the short time (λ_S) and long time (λ_L) maximum Lyapunov exponent. The results showed that λ_S of running in semi-rigid brace is significantly different with running in other braces in chronic ankle instability group; but it was not different with the control group. It seems running in semi-rigid brace in chronic ankle instability group provides stability like healthy control group.

کلیدواژه‌ها [English]

  • Ankle Sprain
  • External Prophylactic Ankle Support
  • Maximum Lyapunov exponent
  • Chronic Ankle Instability
1.    Thompson C, Schabrun S, Romero R, Bialocerkowski A, van Dieen J, Marshall P. Factors Contributing to Chronic Ankle Instability: A Systematic Review and Meta-Analysis of Systematic Reviews. Sports Med. 2018; 48(1):189-205.
2.      Yeung M, Chan K-M, So C, Yuan W.  An epidemiological survey on ankle sprain. Br J Sports Med. 1994; 28(2):112-6.
3.      Czajka CM, Tran E, Cai AN, DiPreta JA. Ankle sprains and instability. Med Clin North Am. 2014;98(2):313-29.
4.      Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364-375.
5.      Croy T, Saliba S, Saliba E, Anderson MW, Hertel J. Differences in lateral ankle laxity measured via stress ultrasonography in individuals with chronic ankle instability, ankle sprain copers, and healthy individuals. J Orthop Sports Phys Ther. 2012;42(7):593-600.
6.      Hubbard TJ, Hertel J. Mechanical contributions to chronic lateral ankle instability. Sports Med. 2006; 36(3):263-77.
7.      Hiller CE, Nightingale EJ, Lin C-WC, Coughlan GF, Caulfield B, Delahunt E. Characteristics of people with recurrent ankle sprains: a systematic review with meta-analysis. Br J Sports Med. 2011; 45(8): 660-72.
8.      Gribble PA, Taylor BL, Shinohara J. Bracing does not improve dynamic stability in chronic ankle instability subjects. Phys Ther Sport. 2010;11(1):3-7.
9.      Wikstrom E, Tillman M, Chmielewski T, Cauraugh J, Naugle K, Borsa P. Dynamic postural control but not mechanical stability differs among those with and without chronic ankle instability. Scand J Med Sci Sports. 2010;  20(1):e 137-44.
10.    Denegar CR, Hertel J, Fonseca J. The effect of lateral ankle sprain on dorsiflexion range of motion, posterior talar glide, and joint laxity. J Orthop Sports Phys Ther. 2002;32(4):166-73.
11.    Pedowitz DI, Reddy S, Parekh SG, Huffman GR, Sennett BJ. Prophylactic bracing decreases ankle injuries in collegiate female volleyball players. Am J Sports Med. 2008;36(2):324-7.
12.    Mickel TJ, Bottoni CR, Tsuji G, Chang K, Baum L, Tokushige KAS. Prophylactic bracing versus taping for the prevention of ankle sprains in high school athletes: a prospective, randomized trial. J Foot Ankle Surg. 2006; 45(6):360-5.
13.    Olmsted LC, Vela LI, Denegar CR, Hertel J. Prophylactic ankle taping and bracing: a numbers-needed-to-treat and cost-benefit analysis. J Athl Train. 2004;39(1):95.-100
14.    Verhagen EA, van der Beek AJ, van Mechelen W. The effect of tape, braces and shoes on ankle range of motion. Sports Med. 2001;31(9):667-77.
15.    Zwiers R, Vuurberg G, Blankevoort L, Kerkhoffs G. Taping and bracing in the prevention of ankle sprains: current concepts . J ISAKOS. 2016;1(6):304-10.
16.    Halim-Kertanegara S, Raymond J, Hiller CE, Kilbreath SL, Refshauge KM. The effect of ankle taping on functional performance in participants with functional ankle instability. Phys The Sport. 2017; 23:162-167.
17.    De Ridder R, Willems T, Vanrenterghem J, Roosen P. Effect of tape on dynamic postural stability in subjects with chronic ankle instability. Int J Sports Med. 2015; 36(4):321-6.
18.    Bicici S, Karatas N, Baltaci G. Effect of athletic taping and kinesiotaping on measurements of functional performance in basketball players with chronic inversion ankle sprains. Int J Sports Phys The. 2012;7(2):154-66.
19.    Dingwell JB, Cusumano JP. Nonlinear time series analysis of normal and pathological human walking. Chaos. 2000;10(4):848-63.
20.    Dingwell JB, Cusumano JP, Sternad D, Cavanagh PR. Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. J Biomech. 2000;33(10):1269-77.
21.    Bassiri Z, Eslami M. The effect of nanoclay particles in sport shoe outsole on anklepower during stance phase of running. J Appl Exer Physio. 2016;12(23):43-52. (In Persion)
22.    Bassiri Z, Eslami M, Ghaemy M, Hosseninejad SE, Rabiei M. The Effect of Shoe Outsole Containing Nanoclay Particles on Knee Joint Power during the Stance Phase of Running. Ann Appl Sport Sci. 2014; 2(3): 33-40.
23.    Brin M, Stuck G. Introduction to Dynamical Systems: Cambridge University Press; 2015.
24.    van Emmerik REA, Ducharme SW, Amado AC, Hamill J. Comparing dynamical systems concepts and techniques for biomechanical analysis. J Sport Health Sci. 2016;5(1):3-13.
25.    Beek PJ, Peper C, Stegeman D. Dynamical models of movement coordination. Hum mov sci. 1995;14(4-5):573-608.
26.    Sloot LH, Van Schooten KS, Bruijn SM, Kingma H, Pijnappels M, van Dieën JH. Sensitivity of local dynamic stability of over-ground walking to balance impairment due to galvanic vestibular stimulation. Ann Biomed Eng. 2011;39(5):1563-9.
27.    Bruijn S, Meijer O, Beek P, Van Dieën J. Assessing the stability of human locomotion: a review of current measures. Journal of the Royal Society Interface. J R Soc Interface. 2013;10:1-23.
28.    Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D. 1993; 65: 117-134.
29.    Nigg BM, Emery C, Hiemstra LA. Unstable shoe construction and reduction of pain in osteoarthritis patients. Med Sci Sports Exerc. 2006;38(10):1701-8.
30.    Chuckpaiwong B, Cook, C., Pietrobon, R., & Nunley, J. A. Second metatarsal stress fracture in sport: comparative risk factors between proximal and non-proximal locations. Br J Sports Med. 2007;41(8):510-4.
31.    Simon J, Donahue M, Docherty C. Development of the identification of functional ankle instability (IdFAI). Foot Ankle Int. 2012;33(9):755-63.
32.    Gurav RS, Ganu SS, Panhale VP. Reliability of the Identification of Functional Ankle Instability (IdFAI) scale across different age groups in adults. N Am J Med Sci. 2014;6(10):516-8.
33.    Bruijn SM, Bregman DJJ, Meijer OG, Beek PJ, van Dieën JHJMe, physics. Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach. Med Eng Phys. 2012;34(4):428-36.
34.    Bruijn SM, Th Ten Kate WR, Faber GS, Meijer OG, Beek PJ, van Dieën JH. Estimating dynamic gait stability using data from non-aligned inertial sensors. Ann Biomed Eng. 2010;38(8):2588-93.
35.    Bruijn SM, van Dieën JH, Meijer OG, Beek PJ. Statistical precision and sensitivity of measures of dynamic gait stability. J Neurosci Methods. 2009;178(2):327-33.
36.    Bruijn SM, van Dieën JH, Meijer OG, Beek PJ. Is slow walking more stable? J Biomech. 2009;42(10):1506-12.
37.    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7:77-95.
38.    Brown CN, Bowser B, Orellana A. Dynamic postural stability in females with chronic ankle instability. Med Sci Sports Exerc. 2010;42(12):2258-63.
39.    England SA, Granata KP. The influence of gait speed on local dynamic stability of walking. Gait Posture.  2007;25(2):172-8.
40.    Takens F. Detecting strange attractors in turbulence.  Dynamical systems and turbulence, Warwick. 1980;898: 366-81.
41.    Sauer T, Yorke JA, Casdagli M. Embedology. J Stat Phys. 1991;65(3-4):579-616.
   42. Li-Shin Su G, Dingwell JB. Dynamic stability of passive dynamic walking on an irregular surface. J Biomsch Eng. 2007; 129(6): 802-10.
43.    Kurz MJ, Markopoulou K, Stergiou N. Attractor divergence as a metric for assessing walking balance. Nonlinear Dynamics Psychol Life Sci. 2010; 14(2): 151-64.
44.    Roos PE, Dingwell JB. Influence of simulated neuromuscular noise on the dynamic stability and fall risk of a 3D dynamic walking model. J Biomech. 2011;44(8):1514-20.
45.    Manor B, Wolenski P, Guevaro A, Li LJJoE, Kinesiology. Differential effects of plantar desensitization on locomotion dynamics. Electromyogr Kinesiol. 2009;19(5):e320-8.
46.    Chang MD, Sejdić E, Wright V, Chau T. Measures of dynamic stability: Detecting differences between walking overground and on a compliant surface. Hum Mov Sci. 2010;29(6):977-86.
47.    van Schooten KS, Sloot LH, Bruijn SM, Kingma H, Meijer OG, Pijnappels M, et al. Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait. Gait Posture. 2011;33(4):656-60.
48.    Hadadi M, Haghighat F, Mohammadpour N, Sobhani S. Effects of Kinesiotape vs Soft and Semirigid Ankle Orthoses on Balance in Patients With Chronic Ankle Instability: A Randomized Controlled Trial. Foot Ankle Int. 2020; 41(7): 793-802.
49.    Garcia M, Chatterjee A, Ruina A, Coleman M. The simplest walking model: stability, complexity, and scaling. J Biomech Eng. 1998;120(2):281-8.
50.    McAndrew PM, Wilken JM, Dingwell JB. Dynamic stability of human walking in visually and mechanically destabilizing environments. J Biomech. 2011;44(4):644-9.
51.    Hak L, Houdijk H, Steenbrink F, Mert A, van der Wurff P, Beek PJ, et al. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture. 2012; 36(2): 260-4.
52.    Bruijn SM, Meijer O, Beek P, van Dieen JH. Assessing the stability of human locomotion: a review of current measures. J R Soc Interface. 2013;10(83):20120999.