نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رفتار حرکتی، گروه رفتار حرکتی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه رفتار حرکتی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران

3 گروه رفتار حرکتی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

برنامه­های تمرینی می­توانند اثرات منفی سالمندی بر الگوهای راه رفتن را بهبود ببخشند. اما اثربخشی برنامه­های تمرینی مبتنی بر دستکاری قیود تکلیف بر الگوهای راه رفتن نامشخص است. ازین­رو، هدف تحقیق حاضر بررسی اثربخشی تاثیر دستکاری قیود تکلیف بر پارامترهای فضای زمانی راه رفتن سالمندان سالم است. تعداد 30 مرد سالمند سالم به­صورت تصادفی انتخاب و در دو گروه مداخله و کنترل تقسیم­بندی شدند. گروه مداخله اقدام به انجام تمرینات دستکاری قیود تکلیف به مدت 8 هفته و به­صورت 3 بار در هفته نمودند. گروه کنترل نیز، طی مدت اجرای تحقیق به فعالیت عادی خود ادامه دادند. پارامترهای کینماتیک راه رفتن با استفاده از تجزیه و تحلیل گامبرداری زبریس بررسی شدند. نتایج آزمون تحلیل کوواریانس با حذف اثر پیش­آزمون نشان داد شاخص­های طول استراید، آهنگ، سرعت و تغییرپذیری سرعت در گروه مداخله بهبود معناداری را نسبت به گروه کنترل داشتند (05/0˂P). در حالی­که در شاخص زمان استراید تفاوت معناداری دیده نشد (07/0=P). تمرینات مبتنی بر دستکاری قیود در سالمندان می­تواند موجب بهبود پارامترهای مرتبط با راه رفتن شده و ازاین­طریق باعث کاهش میزان خطر سقوط و عوارض متعاقب آن در این گروه سنی شود.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Task Constraints Manipulation Spatiotemporal Parameters of Gait of Elderly Adults

نویسندگان [English]

  • Masomeh Gheybollahi 1
  • Shahab Parvinpour 2
  • Marzieh Balali 3
  • Zahra Entezari 3

1 Ph.D Student of Motor Behavior, Department of Motor Behavior, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Motor Behavior, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran

3 Department of Motor Behavior, Central Tehran Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

Background and Purpose
Walking is a fundamental motor skill critical for maintaining independence and preventing falls among elderly adults. With advancing age, physiological and psychological changes—such as increased reaction time, reduced balance, diminished neuromuscular coordination, decreased muscle strength, and impaired postural control—often lead to altered gait patterns. These changes, which are not necessarily disease-related, result from a combination of physiological decline, environmental factors, and lifestyle choices, ultimately reducing physical fitness in the elderly. Declining physical fitness can disrupt mobility and increase fall risk, a major concern for this population. Walking, as a primary component of daily movement, is often affected by these age-related changes, making it a key indicator of functional independence in older adults.
 Materials and Methods
Identifying factors influencing gait and developing effective interventions to mitigate age-related declines in walking performance have become important research areas. Previous studies have demonstrated that various training methods can positively influence gait patterns, including improvements in walking speed and related parameters. However, the role of environmental and task constraints in modifying gait parameters and reducing fear of falling remains poorly understood. While some research has explored task constraints manipulation, its specific effects on spatiotemporal gait parameters in elderly adults have not been thoroughly investigated.
This semi-experimental study included 30 healthy elderly men aged 59–80 years, randomly assigned to an intervention group (n = 15) or a control group (n = 15). Sample size was determined using G*Power software with an effect size of 0.9. Inclusion criteria included the ability to walk independently, normal or corrected-to-normal vision, capacity to follow simple instructions, and a Mini-Mental State Examination (MMSE) score above 24 to exclude cognitive impairment. Exclusion criteria included history of injuries limiting movement, medical conditions or medications affecting balance and mobility, and missing more than two consecutive training sessions.
The intervention group participated in an 8-week training program (three sessions per week) involving task constraints manipulation, while the control group maintained normal daily activities. The intervention aimed to limit movement in all three dimensions at varying speeds, challenging participants to adapt their gait patterns. An experienced staff member supervised the program to ensure proper engagement. Gait parameters—including stride length (cm), cadence (steps/min), gait velocity (km/h), and variability of velocity (%)—were measured using the FDM gait analysis system (Zebris, Germany). Cognitive status was assessed using the Persian version of the MMSE. Data were analyzed using SPSS version 22. The Shapiro-Wilk test assessed normality, Levene’s test evaluated homogeneity of variances, and one-way analysis of covariance (ANCOVA) compared pre- and post-test results between groups, with significance set at p < 0.05.
 Results
ANCOVA results revealed significant improvements in the intervention group for several spatiotemporal gait parameters, including stride length (p < 0.05), cadence (p < 0.05), gait velocity (p < 0.05), and variability of velocity (p < 0.05). No significant change was observed in stride time (p = 0.07). These findings suggest that task constraints manipulation can effectively enhance gait performance in elderly adults by promoting adaptive movement strategies and improving motor control.
 Conclusion
This study indicates that task constraints manipulation positively influences spatiotemporal gait parameters in elderly adults, potentially reducing fall risk and improving functional mobility. By creating training conditions that challenge participants to adapt their movement patterns, the intervention may enhance the performance of both peripheral and central systems involved in gait control. Improvements in stride length, cadence, and gait velocity suggest that task constraints manipulation facilitates the development of more efficient and stable walking patterns. These results align with previous research demonstrating the benefits of task-specific training in improving motor performance in older adults. The lack of significant change in stride time may indicate that this parameter is less sensitive to task constraints or may require a longer intervention period for measurable improvements.
In conclusion, task constraints manipulation is an effective intervention for improving gait performance in elderly adults. By promoting adaptive movement strategies and enhancing motor control, this approach may contribute to reducing fall risk and improving daily functional mobility. Future research should explore long-term effects and applicability to other populations, such as those with neurological or musculoskeletal impairments.
Article Message
Based on the findings of this study, training methods utilizing task constraints manipulation appear to be an effective approach for improving and facilitating daily activities, such as walking, in the elderly population. Implementing such methods in elderly training programs can enhance functional abilities and contribute to better overall mobility and quality of life.

کلیدواژه‌ها [English]

  • Gait
  • Elderly
  • Falls
  • Task Constraints
  • Spatiotemporal Parameters
  • Balance
  1. Ribeiro F, Oliveira J. Effect of physical exercise and age on knee joint position sense. Arch Gerontol Geriatr. 2010;51(1):64-7.
  2. Mozaffari N, Mohammadi MA, Samadzadeh S. Effect of fall care behaviors training on fear of falling among the elderly people referred to health centers: A double-blind randomized clinical trial. 2018; 24(3):220-32. (Persian)
  3. Dal U, Erdogan T, Resitoglu B, Beydagi H. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture. 2010;31(3):366-9.
  4. Blumen HM, Holtzer R, Brown LL, Gazes Y, Verghese J. Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly. Hum Brain Mapp. 2014;35(8):4090-104.
  5. Ghasempour H, Sadeghi H, Tabatabai Ghomshe F. The effects of eight weeks muscular endurance training on some kinematics gait parameters in male elderly. Razi J Med Sci. 2017;24(156):49-55. (Persian)
  6. Candow DG, Forbes SC, Chilibeck PD, Cornish SM, Antonio J, Kreider RB. Effectiveness of creatine supplementation on aging muscle and bone: focus on falls prevention and inflammation. J Clin Med. 2019;8(4):488.
  7. Frankel JE, Bean JF, Frontera WR. Exercise in the elderly: research and clinical practice. Clin Geriatr Med. 2006;22(2):239-56.
  8. Gillespie L, Handoll H. Prevention of falls and fall-related injuries in older people. Inj Prev. 2009;15(5):354-5.
  9. Clemson L, Stark S, Pighills AC, Torgerson DJ, Sherrington C, Lamb SE. Environmental interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2019;2019(2).
  10. Shafizadeh M, Manson J, Fowler-Davis S, Ali K, Lowe AC, Stevenson J, et al. Effects of enriched physical activity environments on balance and fall prevention in older adults: a scoping review. J Aging Phys Act. 2020;29(1):178-91.
  11. Kaczkurkin AN, Foa EB. Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin Neurosci. 2022.
  12. Shafizadeh M, Parvinpour S, Balali M, Pazhuh FS, Broom D. Effects of locomotion task constraints on running in boys with overweight/obesity: The mediating role of developmental delays. Gait Posture. 2021; 86:354-9.
  13. Pedroso RV, Ayán C, Fraga FJ, da Silva TM, Cancela JM, Santos-Galduròz RF. Effects of functional-task training on older adults with Alzheimer’s disease. J Aging Phys Act. 2018;26(1):97-105.
  14. Orishimo KF, Kremenic IJ, Mullaney MJ, McHugh MP, Nicholas SJ. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):1587-93.
  15. del Pozo-Cruz B, Gusi N, Adsuar JC, del Pozo-Cruz J, Parraca JA, Hernandez-Mocholí M. Musculoskeletal fitness and health-related quality of life characteristics among sedentary office workers affected by sub-acute, non-specific low back pain: a cross-sectional study. Physiotherapy. 2013;99(3):194-200.
  16. Foroughan M, Jafari Z, Shirin BP, Ghaem MFZ, Rahgozar M. Validation of mini-mental state examination (MMSE) in the elderly population of Tehran. 2008;2(10):29-37. (Persian)
  17. Aung N, Bovonsunthonchai S, Hiengkaew V, Tretriluxana J, Rojasavastera R, Pheung-Phrarattanatrai A. Concurrent validity and intratester reliability of the video-based system for measuring gait poststroke. Physiother Res Int. 2020;25(1):e1803.
  18. Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7(9):697-709.
  19. Zijlstra W. Assessment of spatio-temporal parameters during unconstrained walking. Eur J Appl Physiol. 2004;92(1):39-44.
  20. Sadeghi H, Prince F, Zabjek KF, Allard P. Sagittal-hip-muscle power during walking in old and young able-bodied men. J Aging Phys Act. 2001;9(2):172-83.
  21. Sadeghi H, Norouzi HR. Spatio-Temporal Parameters' Changes in Gait of Male Elderly Subjects. Iran J Ageing. 2010;4(2). (Persian)
  22. Yamaguchi T, Suzuki A, Hokkirigawa K. Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds. PLoS One. 2017;12(6):e0179817.
  23. Doi T, Makizako H, Shimada H, Yoshida D, Tsutsumimoto K, Sawa R, et al. Effects of multicomponent exercise on spatial-temporal gait parameters among the elderly with amnestic mild cognitive impairment (aMCI): Preliminary results from a randomized controlled trial (RCT). Arch Gerontol Geriatr. 2013;56(1):104-8.
  24. Aboutorabi A, Arazpour M, Bahramizadeh M, Hutchins SW, Fadayevatan R. The effect of aging on gait parameters in able-bodied older subjects: a literature review. Aging Clin Exp Res. 2016;28(3):393-405.
  25. Moy B, Renshaw I, Davids K, Brymer E. Overcoming acculturation: physical education recruits' experiences of an alternative pedagogical approach to games teaching. Phys Educ Sport Pedagog. 2016;21(4):386-406.
  26. Buszard T, Farrow D, Reid M, Masters RS. Scaling sporting equipment for children promotes implicit processes during performance. Conscious Cogn. 2014;30:247-55.
  27. Hill K, Womer M, Russell M, Blackberry I, McGann A. Fear of falling in older fallers presenting at emergency departments. J Adv Nurs. 2010;66(8):1769-79.
  28. Roos PE, Dingwell JB. Neuronal noise influences gait variability and fall risk in a dynamic walking model. 2010: Citeseer.
  29. Lövdén M, Schaefer S, Pohlmeyer AE, Lindenberger U. Walking variability and working-memory load in aging: a dual-process account relating cognitive control to motor control performance. J Gerontol B Psychol Sci Soc Sci. 2008;63(3):P121-P8.
  30. Hong S, Huang H, Yang M, Wu H, Wang L. Enriched environment decreases cognitive impairment in elderly rats with prenatal mobile phone exposure. Front Aging Neurosci. 2020; 12:162.