نوع مقاله : مقاله مروری

نویسندگان

1 استادیار گروه بیومکانیک وفناوری ورزشی، پژوهشگاه تربیت‌بدنی و علوم ورزشی، تهران، ایران.

2 دانشجوی دکتری بیومکانیک ورزشی، دانشکده تربیت‌بدنی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.

3 استاد گروه آناتومی، دانشکده پزشکی، دانشگاه علوم پزشکی مازندران، ساری، ایران.

4 استادیار گروه بیومکانیک ورزشی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

تأثیر ورزش و میزان شدت آن بر پارامترهای بیومکانیک بافت آشیل، چالشی آشکار برای محققان این حوزه است؛ بنابراین مطالعه حاضر با هدف مرور نظام‌مند مطالعات انجام‌شده در حوزه اثر تمرینات ورزشی بر ویژگی‌های بیومکانیکی تاندون آشیل و تأثیر آن بر توان‌بخشی پس از آسیب تاندون آشیل، انجام شد. برای این بررسی از مطالعات انجام‌شده در سال‌های 2020 تا نوامبر 2023 استفاده شد. جست‌وجوی کلمات کلیدی در چهار پایگاه اطلاعاتی معتبر google scholer، Pub Med، Web of Scince، Scopus، مطابق با PRISMA موارد گزارش برگزیده برای بررسی‌های سیستماتیک و متاانالیز انجام شد. در این مطالعه عبارات جست‌وجو شامل Achilles Tendon, Stiffness, Exercise, Biomechanics با کلمات مترادف با دستور Boolean AND ترکیب شده و با دستور Boolean OR پیوند داده شدند. درنهایت، ویژگی­های بیومکانیکی تاندون با دو عامل سفتی و مداخلات تمرین ورزشی یا توان‌بخشی تندینوپاتی تاندون آشیل و متغیرهای آن بررسی شد. از 845 مقاله یافت‌شده، 10 مقاله برای این پژوهش انتخاب شد. به‌طورکلی نتایج نشان داد که برای افزایش اثربخشی در هنگام مداخلات تمرینی تندینوپاتی باید در تمرینات نیروی خارجی به اندازه کافی اعمال شود. همبستگی‌های درخورتوجهی بین سفتی تاندون و فعالیت‌های مختلف و نمره کل پارگی تاندون آشیل وجود دارد که نشان‌دهنده اهمیت بالینی سفتی تاندون و اندازه‌گیری فشار پلانتار پا است. نتایج حاضر نشان می‌دهد که چگونه تغییر در ساختار آشیل می‌تواند بر فعالیت‌های روزانه بیماران تأثیر بگذارد. مداخله با بار بالا تنظیمات مکانیکی و مورفولوژیک چشمگیری در واحد عضلات-تاندون پلانتار فلکسور ایجاد می‌کند. این امر ممکن است به حفاظت از تاندون در برابر آسیب ناشی از کشش کمک کند. مداخله با بار بالا را می‌توان به‌عنوان پروتکل درمانی (جایگزین) مؤثر در مدیریت توان‌بخشی آسیب تاندون آشیل در نظر گرفت؛ بنابراین انتخاب ورزش مناسب در بازتوانی تاندون آشیل بسیار اهمیت دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Systematic Review of the Effect of Exercise on Biomechanical Parameters of the Achilles Tendon

نویسندگان [English]

  • Davood Khezri 1
  • Nazfar Nikjoo 2
  • Fereshteh Talebpour Amiri 3
  • Ali Fatahi 4

1 Assistant Professor in Sport Biomechanics, Department of Sport Biomechanics and Technology, Sport Science Research Institute, Tehran, Iran

2 phd candidate of sport biomechanics, central branch islamic azad university

3 Full professor of Anatomy, Molecular and Cell Biology Research Center, Faculty of Medicine

4 Assistant Professor, Sports Biomechanics Department, Physical Education and Sports Sciences Faculty, Islamic Azad University of Central Tehran Branch, Tehran, Iran

چکیده [English]

Background and Purpose
Achilles tendon injuries and dysfunctions, particularly Achilles tendinopathy, represent common issues among athletes and physically active individuals. The Achilles tendon, being the largest and strongest tendon in the human body, plays a critical role in locomotion by storing and releasing elastic energy during dynamic activities such as walking, running, and jumping. Given its high mechanical demands and vulnerability to overuse injuries, optimizing rehabilitation strategies for Achilles tendinopathy is essential. Exercise, particularly those involving mechanical loading, has emerged as a primary intervention. However, the precise effects of various exercise modalities and intensities on the tendon’s biomechanical properties remain a subject of ongoing investigation. This systematic review explores these impacts to guide evidence-based rehabilitation and prevention strategies. This study aims to systematically review the literature on how different forms and intensities of exercise influence the biomechanical parameters of the Achilles tendon, particularly stiffness, cross-sectional area (CSA), tendon elongation, and force transmission. The research also evaluates the effects of these exercise-induced changes on rehabilitation outcomes following Achilles tendinopathy.
 Methods & Materials
Following PRISMA guidelines, a comprehensive literature search was conducted across four major databases (PubMed, Scopus, Web of Science, and Google Scholar) for studies published between January 2020 and November 2023. Keywords included combinations of “Achilles tendon,” “exercise,” “stiffness,” “biomechanics,” and “rehabilitation” using Boolean operators (AND/OR). From an initial pool of 845 articles, 10 studies met the inclusion criteria after applying predefined filters related to language, methodology, relevance, and publication date. Studies involving amputation or cognitive disorders were excluded. All selected studies were independently evaluated by four reviewers using a standardized data extraction form and a modified MINORS scoring system for quality assessment.
 Results
Across the selected studies, various types of exercise interventions—ranging from short-term treadmill running to high-load resistance training—were found to significantly affect the mechanical and structural properties of the Achilles tendon. The results indicated that adequate external force application during exercise interventions is critical for improving tendinopathy outcomes. Significant correlations were observed between tendon stiffness, activity levels, and the Achilles Tendon Total Rupture Score (ATRS), highlighting the clinical relevance of stiffness and plantar pressure measurements. High-load interventions were found to induce significant mechanical and morphological adaptations in the plantar flexor muscle-tendon unit, potentially protecting the tendon from strain-induced damage. These findings suggest that high-load exercises can serve as an effective therapeutic protocol for Achilles tendon injury rehabilitation.
However, the review also revealed that stiffness measurements alone may not fully capture changes in Achilles tendon properties, emphasizing the importance of selecting appropriate evaluation methods during treatment and follow-up. The Achilles tendon is a dynamic tissue that adapts to mechanical loads, underscoring the need for tailored exercise and rehabilitation strategies.
 Discussion
This review emphasizes that the Achilles tendon is a dynamic, load-responsive tissue that adapts to exercise in a dose-dependent manner. Exercise interventions can modulate mechanical properties like stiffness and CSA, which are crucial for tendon resilience. High-load exercises, particularly those incorporating eccentric movements and maximal dorsiflexion, appear most effective in promoting tendon adaptation and rehabilitation. Nonetheless, the measurement of stiffness alone is insufficient to evaluate tendon health comprehensively.
Clinical outcomes are influenced not only by structural changes but also by neuromuscular coordination, proprioception, and metabolic efficiency. As such, multi-dimensional evaluation protocols—including biomechanical assessments, functional tests, and patient-reported outcome measures—should be integrated into tendon rehabilitation programs. Moreover, early intervention and tailored exercise protocols based on individual activity levels and injury history can enhance treatment efficacy and prevent recurrence.
Age-related changes also warrant consideration. With aging, tendon stiffness naturally declines, contributing to increased metabolic cost of walking and reduced gait efficiency. Rehabilitation strategies targeting the plantar flexor muscle–tendon unit in older adults may therefore need to incorporate both loading exercises and gait retraining using wearable biofeedback devices.
 Conclusion
The biomechanical properties of the Achilles tendon are modifiable through exercise, particularly when high mechanical loads are applied consistently over time. This systematic review demonstrates that exercise protocols focusing on tendon stiffness, CSA, and force transmission yield clinically significant improvements in tendinopathy rehabilitation. However, optimal assessment requires a comprehensive, multidimensional approach beyond stiffness measurement alone. Tailored rehabilitation strategies that consider patient-specific biomechanics, training history, and functional outcomes are essential for effective tendon recovery and injury prevention.
 Article Message
High-load, biomechanically informed exercise interventions can effectively improve Achilles tendon structure and function, serving as an optimal rehabilitation strategy for tendinopathy when integrated with comprehensive assessment methods.
 

کلیدواژه‌ها [English]

  • Achilles Tendon
  • Stiffness
  • Biomechanics
  • Exercise
  • Tendinopathy
  1. Eslami M, Khezri D, Hoseinnezhad M. The effect of two different types of shoes out soles on the frequency content of the ground reaction force components. Studies in Sport Medicine. 2015;6(16):33-44.
  2. Khezri D, Uosef Pour R, Fayyaz Moghar A. The establishment of normative values for lower limbs strength, flexibility and alignment in runners of Mazandaran province. Studies in Sport Medicine. 2019;10(24):69-82.
  3. Mehrlatifan S, Fatahi A, Khezri D. Frequency content of ground reaction forces during walking: a comparison in the elderly fallers and non-fallers. Journal of Advanced Sport Technology. 2023;7(1):57-68.
  4. Seyedi M, Nobari H, Abbasi H, Khezri D, Oliveira R, Pérez-Gómez J, et al. Effect of four weeks of home-based balance training on the performance in individuals with functional ankle instability: a remote online study. Healthcare. 2021;9(11):1428.
  5. Doral MN, Alam M, Bozkurt M, et al. Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc. 2010;18(5):638-43.
  6. Kubo K, Miyazaki D, Tanaka S, Shimoju S, Tsunooda N. Relationship between Achilles tendon properties and foot strike patterns in long-distance runners. J Sports Sci. 2015;33(7):665-9.
  7. Kubo K, Kanehisa H, Fukunaga T. Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol. 2003;88(6):520-6.
  8. Keuler EM, Loegering IF, Martin JA, Roth JD, Thelen DG. Shear wave predictions of Achilles tendon loading during human walking. Sci Rep. 2019;9(1):1–9.
  9. Shokrian F, Khezry D, Matin Homayi H, Fattahi A. Comparing the electrical activity of selected ankle muscles in athletes during landing from different heights. The Scientific Journal of Rehabilitation Medicine. 2000;11(1):98-113.
  10. Komi PV. Relevance of in vivo forcemeasurements to human biomechanics. J Biomech. 1990;23(1 Suppl):23–34.
  11. Baxter JR, Corrigan P, Hullfish TJ, O'Rourke P, Silbernagel KG. Exercise progression to incrementally load the Achilles tendon. Med Sci Sports Exerc. 2021;53(1):124-130.
  12. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
  13. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712-6.
  14. Chen M, Shetye SS, Rooney SI, Soslowsky LJ. Short- and long-term exercise results in a differential achilles tendon mechanical response. J Biomech Eng. 2020;142(8):081011.
  15. Radovanović G, Bohm S, Peper KK, Arampatzis A, Legerlotz K. Evidence-based high-loading tendon exercise for 12 weeks leads to increased tendon stiffness and cross-sectional area in achilles tendinopathy: a controlled clinical trial. Sports Med Open. 2022;8(1):149.
  16. Sichting F, Kram NC, Legerlotz K. An identical twin study on human achilles tendon adaptation: regular recreational exercise at comparatively low intensities can increase tendon stiffness. Front Physiol. 2022; 12:777403.
  17. Misir A, Kizkapan TB, Arikan Y, Akbulut D, Onder M, Yildiz KI, Ozkocer SE. Repair within the first 48 h in the treatment of acute Achilles tendon ruptures achieves the best biomechanical and histological outcomes. Knee Surg Sports Traumatol Arthrosc. 2020 Sep;28(9):2788-97.
  18. Yeh CH, Calder JD, Antflick J, Bull AMJ, Kedgley AE. Maximum dorsiflexion increases Achilles tendon force during exercise for midportion Achilles tendinopathy. Scand J Med Sci Sports. 2021 Aug;31(8):1674-1682.
  19. Jandacka D, Jandackova VK, Juras V, Vilimek D, Skypala J, Elavsky S, Uchytil J, Monte A, Hamill J. Achilles tendon structure is associated with regular running volume and biomechanics. J Sports Sci. 2023 Mar;41(4):381-390.
  20. Pimentel RE, Sawicki GS, Franz JR. Simulations suggest walking with reduced propulsive force would not mitigate the energetic consequences of lower tendon stiffness. PLoS One. 2023 Oct 26;18(10): e0293331.
  21. Laurent D, Walsh L, Muaremi A, Beckmann N, Weber E, Chaperon F, Haber H, Goldhahn J, Klauser AS, Blauth M, Schieker M. Relationship between tendon structure, stiffness, gait patterns and patient reported outcomes during the early stages of recovery after an Achilles tendon rupture. Sci Rep. 2020;10(1):20757.
  22. Breda SJ, de Vos RJ, Krestin GP, Oei EHG. Decreasing patellar tendon stiffness during exercise therapy for patellar tendinopathy is associated with better outcome. J Sci Med Sport. 2022 May;25(5):372-378.
  23. Waugh CM, Scott A. Substantial Achilles adaptation following strength training has no impact on tendon function during walking. PLoS One. 2021;16(7): e0255221.
  24. Delabastita T, Bogaerts S, Vanwanseele B. Age-related changes in Achilles tendon stiffness and impact on functional activities: a systematic review and meta-analysis. J. Aging Phys. Act. 2018;27(1):116–27.
  25. Stenroth L. et al., Plantarflexor muscle–tendon properties are associated with mobility in healthy older adults. J Gerontol. 2015;70(8): 996–1002.
  26. Mehrlatifan S, Fatahi A, Khezri D. Biomechanics of gait in the elderly: a literature review. Asian J Sports Med. 2023;14(2): e135663.
  27. Galloway MT, Lalley AL, Shearn JT. The role of mechanical loading in tendon development, maintenance, injury, and repair. J Bone Jt Surg Am. 2013;95(17):1620–8.