نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه طب ورزشی پژوهشگاه علوم ورزشی

2 دانشکده تربیت بدنی و علوم ورزشی دانشگاه خوارزمی تهران

3 استادیار بهداشت و طب ورزشی، دانشگاه تهران

چکیده

رفتار و ویژگی الاستیک ساختارهای بدن انسان، نقشی بالقوه در چگونگی انتقال نیرو و غلبه بر اغتشاشات خارجی وارد بر بدن دارد و به‌این‌ترتیب می‌تواند نقشی تعیین‌کننده در پیشگیری از بروز آسیب‌های اسکلتی-عضلانی داشته باشد. هدف از پژوهش حاضر، سنجش ارتباط میان رفتار الاستیک بدن با عوامل خطرزای آسیب‌های اسکلتی-عضلانی حین فرود تک‌پا بود. 30 مرد جوان سالم آزمون‌های هاپینگ را برای تعیین رفتار الاستیک بدن و آزمون فرود تک‌پا را برای تعیین عوامل خطرزای آسیب، روی یک صفحة نیرو و در برابر دوربین سرعت-بالا انجام دادند. سفتی پا به‌عنوان یکی از مهم‌ترین متغیرهای تعیین‌کنندة رفتار الاستیک بدن و زمان رسیدن به پایداری، فلکشن و والگوس زانو به‌عنوان عوامل خطرزای آسیب، محاسبه شدند و ارتباط آنها از طریق آزمون همبستگی پیرسون تعیین گشت. ضرایب همبستگی معنادار مثبت بین سفتی پا و زاویة فلکشن اولیه و نهایی زانو حین فرود مشاهده شد اما هیچ ارتباط معناداری بین سفتی پا با والگوس زانو وجود نداشت. روابط معنادار مثبت بین سفتی پا و زمان رسیدن به پایداری در راستای آنتریورپوستریور، دیگر یافتة این پژوهش بود. بر اساس یافته‌های پژوهش حاضر، به نظر می‌رسد اگرچه سفتی پای بالا به‌عنوان عاملی مهم برای موفقیت در برخی عملکردهای حرکتی نظیر دویدن شناخته می‌شود، اما می‌تواند اجرای صحیح تکنیک فرود را با اختلال مواجه سازد و رسیدن به شرایط پایدار در راستای آنتریورپوستریور را به تاخیر اندازد. اجرای تمرینات تخصصی به منظور اصلاح تکنیک فرود یا تعدیل سفتی پا و بهینه‌سازی رفتار الاستیک بدن، می‌تواند در پیشگیری از آسیب‌های اسکلتی-عضلانی اندام تحتانی نظیر آسیب ACL موثر باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Is elastic behavior of human body related to the risk factors of musculoskeletal injuries during landing?

نویسندگان [English]

  • Mojtaba Ashrostaghi 1
  • Heydar Sadeghi 2
  • Elham Shirzad 3

1 Sports medicine department, Sport sciences research institute of Iran

2 Department of Physical education & Sport Sciences, Kharazmi University

3 Assistant Professor of Corrective Exercises and Sports Injuries, University of Tehran

چکیده [English]

The elastic properties and behavior of human body structure are potentially effective on perturbation control and force transmission and so could theoretically be considered as the determinant factors of musculoskeletal injury prevention. The purpose of this study was to determine the relationship between human body elastic behavior and musculoskeletal risk factors during unilateral landing. 30 young healthy men performed hopping and unilateral landing tests on a force plate and in front of a high-speed camera to quantify the elastic behavior and injury risk factors. Leg stiffness as one of the most important parameters of human body elastic behavior and time to stability, knee flexion and knee valgus as some injury risk factors were calculated and their relationships were determined by Pearson correlation test. There were some positive significant correlation coefficients between leg stiffness and initial and final knee flexion angle but there wasn't any relationship between leg stiffness and knee valgus parameters. Another important finding of this study was the positive significant correlation of leg stiffness and time to stability along with anteroposterior axis. According to the results, it seems although high values of leg stiffness is considered as an important factor to success in some movement performances like sprinting, actually it can disturb to adopt a correct landing technique and it can delay the anterior-posterior stabilization. Specific training method modifying the landing technique, regulating the leg stiffness and optimizing the body elastic behavior, can be effective on the prevention of lower body musculoskeletal injuries like ACL injury.

کلیدواژه‌ها [English]

  • elastic behavior
  • leg stiffness
  • hopping
  • risk factors
  1. Hong Y, Bartlett R. Routledge handbook of biomechanics and human movement science. London: Routledge; 2008.
  2. Bartlett R, Bussey M. Sports biomechanics: reducing injury risk and improving sports performance. London: Routledge; 2013.
  3. Zatsiorsky V. The encyclopedia of sports medicine: an IOC Medical Commission Publication. Volume IX. Biomechanics in sport: performance enhancement and injury prevention. Hoboken, New Jersey: John Wiley & Sons; 2008.
  4. Moir G. Strength and conditioning: a biomechanical approach. Burlington, Massachusetts: Jones & Bartlett Learning; 2015.
  5. Khezri D, Uosef Pour R, Fayyaz Moghar AJSiSM. The establishment of normative values for lower limbs strength, flexibility and alignment in runners of Mazandaran province. Studies in Sport Medicine. 2019;10(24):69-82. [In Persian]
  6. París-García F, Barroso A, Canas J, Ribas J, París F. A critical study on the experimental determination of stiffness and viscosity of the human triceps surae by free vibration methods. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2013;227(9):935-54.
  7. Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol. 2005;99(3):986-94.
  8. Brazier J, Bishop C, Simons C, Antrobus M, Read PJ, Turner AN. Lower extremity stiffness: effects on performance and injury and implications for training. Strength & Conditioning Journal. 2014;36(5):103-12.
  9. Granata K, Padua D, Wilson S. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol. 2002;12(2):127-35.
  10. Khezri D, Salari Esker F, Eslami MJSiSM. Quantifying foot inter-joint coordination and variability after wearing variable stiffness foot insoles during the stance phase of running. Studies in Sport Medicine. 2020;11(26):91-108. [In Persian].
  11. Butler RJ, Crowell III HP, Davis IM. Lower extremity stiffness: implications for performance and injury. Clinical Biomechanics. 2003;18(6):511-7.
  12. Vazirian M, Shojaei I, Tromp RL, Nussbaum MA, Bazrgari B. Age-related differences in trunk intrinsic stiffness. Journal of Biomechanics. 2016;49(6):926-32.
  13. Lee BC, McGill SM. Effect of long-term isometric training on core/torso stiffness. J Strength Cond Res. 2015;29(6):1515-26.
  14. Blackburn JT, Norcross MF, Padua DA. Influences of hamstring stiffness and strength on anterior knee joint stability. Clinical Biomechanics. 2011;26(3):278-83.
  15. Blackburn JT, Norcross MF, Cannon LN, Zinder SM. Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading. Journal of Athletic Training. 2013;48(6):764-72.
  16. Watsford ML, Murphy AJ, McLachlan KA, Bryant AL, Cameron ML, Crossley KM, et al. A prospective study of the relationship between lower body stiffness and hamstring injury in professional Australian rules footballers. The American Journal of Sports Medicine. 2010;38(10):2058-64.
  17. Pruyn EC, Watsford ML, Murphy AJ, Pine MJ, Spurrs RW, Cameron ML, et al. Relationship between leg stiffness and lower body injuries in professional Australian football. J Sports Sci. 2012;30(1):71-8.
  18. Moresi MP, Bradshaw EJ, Greene DA, Naughton GA. The impact of data reduction on the intra-trial reliability of a typical measure of lower limb musculoskeletal stiffness. J Sports Sci. 2015;33(2):180-91.
  19. Waxman JP, Schmitz RJ, Shultz SJ. The interday measurement consistency of and relationships between hamstring and leg musculo-articular stiffness. J Appl Biomech. 2015;31(5):340-8.
  20. Maloney SJ, Fletcher IM, Richards J. Reliability of unilateral vertical leg stiffness measures assessed during bilateral hopping. J Appl Biomech. 2015;31(5):285-91.
  21. Brauner T, Sterzing T, Wulf M, Horstmann T. Leg stiffness: comparison between unilateral and bilateral hopping tasks. Hum Mov Sci. 2014;33:263-72.
  22. Fransz DP, Huurnink A, de Boode VA, Kingma I, van Dieën JH. Time to stabilization in single leg drop jump landings: an examination of calculation methods and assessment of differences in sample rate, filter settings and trial length on outcome values. Gait & Posture. 2015;41(1):63-9.
  23. Farley CT, Morgenroth DC. Leg stiffness primarily depends on ankle stiffness during human hopping. Journal of Biomechanics. 1999;32(3):267-73.
  24. Hobara H, Inoue K, Kanosue K. Effect of hopping frequency on bilateral differences in leg stiffness. J Appl Biomech. 2013;29(1):55-60.
  25. Hobara H, Kobayashi Y, Yoshida E, Mochimaru M. Leg stiffness of older and younger individuals over a range of hopping frequencies. J Electromyogr Kinesiol. 2015;25(2):305-9.
  26. Diggin D, Anderson R, Harrison AJ. Limits in reliability of leg-spring and joint stiffness measures during single-leg hopping within a sled-based system. PloS One. 2019;14(12):e0225664.
  27. Ashrostaghi M, Sadeghi H, Shirzad E. A review of the concept of stiffness in the research on mechanical properties and behavior of human body and its measurement methods in lower extremity. J Rehabil Med. 2017;6(2):258-70. [In Persian]
  28. Winter DA. Biomechanics and motor control of human movement. Hoboken, New Jersey: John Wiley & Sons; 2009.
  29. Herrington L, Munro A. Drop jump landing knee valgus angle: normative data in a physically active population. Physical Therapy in Sport. 2010;11(2):56-9.
  30. Holden S, Boreham C, Doherty C, Wang D, Delahunt E. Clinical assessment of countermovement jump landing kinematics in early adolescence: sex differences and normative values. Clinical Biomechanics. 2015;30(5):469-74.
  31. Fransz DP, Huurnink A, de Boode VA, Kingma I, van Dieën JH. The effect of the stability threshold on time to stabilization and its reliability following a single leg drop jump landing. Journal of Biomechanics. 2016;49(3):496-501.
  32. Ross SE, Guskiewicz KM, Yu B. Single-leg jump-landing stabilization times in subjects with functionally unstable ankles. Journal of Athletic Training. 2005;40(4):298.
  33. Morin J-B, Samozino P. Biomechanics of training and testing. Cham: Springer; 2018.
  34. Joseph CW, Bradshaw EJ, Kemp J, Clark RA. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running. J Appl Biomech. 2013;29(4):386-94.
  35. Munro A, Herrington L, Carolan M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. Journal of Sport Rehabilitation. 2012;21(1):7-11.
  36. Munro A, Herrington L, Comfort P. Comparison of landing knee valgus angle between female basketball and football athletes: Possible implications for anterior cruciate ligament and patellofemoral joint injury rates. Physical Therapy in Sport. 2012;13(4):259-64.
  37. Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH. Gender differences in strength and lower extremity kinematics during landing. Clinical Orthopaedics and Related Research®. 2002;401:162-9.
  38. Hobara H, Kato E, Kobayashi Y, Ogata T. Sex differences in relationship between passive ankle stiffness and leg stiffness during hopping. Journal of Biomechanics. 2012;45(16):2750-4.

Granata KP, Wilson SE, Padua DA. Gender differences in active musculoskeletal stiffness. Part I.: Quantification in controlled measurements of knee joint dynamics. J Electromyogr Kinesiol. 2002;12(2):119-26.